

ALMA MATER STUDIORUM Università di Bologna

Federated MIMO in NTN megaconstellations: an overview

EuCNC 2023, June 8 Mega-Constellation Non-Terrestrial Network for 6G

Dr. Alessandro Guidotti, CNIT

Prof. Alessandro Vanelli-Coralli, University of Bologna

The role of Non-Terrestrial Networks in 6G

- 6G systems are expected to achieve more than
 "just" extremely fast connectivity
 - digital twinning for process/product/service virtualisation
 - Al-based connected intelligence
 - immersive communications: high-resolution visual/spatial, tactile/haptic, and other sensory data

A. Guidotti et al., "Role and Evolution of Non-Terrestrial Networks towards 6G systems," submitted to IEEE Access, June 2023.

Architecture and system design

Multilayered constellation from GEO to drones, Innovative LEO and vLEO orbits, optical inter and intra node-links design, cell-free MU-MIMO, traffic-driven coverage

Networking, edge computing and communications

Softwarization, virtualization, and orchestration of network resources, functional split, advanced IP, routing in the sky, resource management, integrated edge communication and computing

Flexible and integrated waveforms

Low PAPR and low OOBE solutions, Non-orthogonal techniques to increase the connection density, novel RA procedures to allow multiple transmissions per beam, multipoint transmission from the sky, distributed beamforming

Dynamic Spectrum Access and New spectrum

Coordinated and uncoordinated sharing among different access technologies, inter and intra layer, higher frequency bands, Q/V and above

Positioning

Network based positioning

AI/ML

Network and system orchestration, Radio Resource Management, Network traffic forecasting, Physical layer management, Channel estimation,

Antennas and components

Active antennas for link budget and flexible coverage, Refracting RIS for indoor coverage, regenerative payload, high-parallel energy efficient HW, Optical devices

ALMA MATER STUDIORUM Università di Bologna

Multi-point transmission from space: Federated CF-MIMO

- Legacy SatCom systems: geographical coverage through co-located radiating elements
- Cell-Free in 6G NTN: centralised/federated feed space beamforming
 - single multi-beam satellite: co-located radiating elements, on-board/on-ground CPU
 - multiple multi-beam satellites: radiating elements distributed in a NGSO swarm, on-ground/on-board CPU

and Electronic Systems, June 2023.

Multi-point transmission from space: Federated CF-MIMO

- On-Ground Beamforming and Scheduling Computation (OGBSC)
 - scheduling and beamforming are computed at the gNB-CUs
 - the beamforming matrix can be applied at the gNB-DUs (OBBF) or at the gNB-CU (OGBF)
 - intra-swarm ISLs not strictly necessary
- On-Board Beamforming and Scheduling Computation (OBBSC)
 - scheduling and beamforming are computed at a master gNB-DU
 - significantly reduced latency, but the complexity is increased
 - intra-swarm ISLs needed

Multi-point transmission from space: Federated CF-MIMO

Payload type	Architecture option			Computation	Application	Δt factors	
Transparent	OGBSC	OGBF	centralised	gNB (on-ground) -	gNB (on-ground)	— user+feeder(+ISLs)	
		OBBF	centralised		on-board		
Regenerative	OGBSC	OGBF	federated or centralised	gNB-CU (on-ground) —	gNB-CU (on-ground)	user+feeder(+ISLs)	
		OBBF			gNB-DU (on-board)		
	OBBSC	OBBF		gNB-DU (on-board)	gNB-DU (on-board)	user(+ISLs) ¹	

¹: The ISLs with OBBSC solutions are intra-swarm and, thus, might be negligible in terms of additional latency.

• Ancillary information is needed for beamforming and scheduling: CSI or location estimates

$$\mathbf{y} = \mathbf{H}_{t_1}^{(feed)} \mathbf{W}_{t_0} \mathbf{s} + \mathbf{z}$$

• In NGSO systems, ancillary information aging is present

$$\Delta t_{OGBSC} = \tau_{user} + \tau_{feeder}^{(DL)} + \tau_{feeder}^{(UL)} + \tau_p + \tau_{rout} + \tau_{ad}$$
$$\Delta t_{OBBSC} = \tau_{user} + \tau_p + \tau_{ad}$$

UNIVERSITÀ DI BOLOGNA

CF-MIMO algorithms

Algorithm	Channel coefficient	Beamforming matrix	Information	Errors		
MMSE	$h_{k,n,s}^{(t)} = \frac{g_{k,n,s}^{(TX,t)} g_{k,n,s}^{(RX,t)}}{4\pi \frac{d_{k,s}^{(t)}}{\lambda} \sqrt{L_{k,s}^{(t)} \kappa BT_k}} e^{-\jmath \frac{2\pi}{\lambda} d_{k,s}^{(t)}} e^{-\jmath \varphi_{k,s}^{(t)}}$	$\mathbf{H}^{H}\left(\mathbf{H}\mathbf{H}^{H}+ ext{diag}(oldsymbol{lpha})I_{K} ight)^{-1}$	CSI	CSI estimation Low-SINR estimation Air interface adj. UE/node movement	Estimated CSI	
LB-MMSE	$\widetilde{h}_{k,n,s}^{(t)} = \frac{\widetilde{g}_{k,n,s}^{(TX,t)} \widetilde{g}_{k,n,s}^{(RX,t)}}{4\pi \frac{\widetilde{d}_{k,s}^{(t)}}{\lambda} \sqrt{\kappa BT_k}} e^{-\jmath \frac{2\pi}{\lambda} \widetilde{d}_{k,s}^{(t)}}$	$\widetilde{\mathbf{H}}^{H}\left(\widetilde{\mathbf{H}}\widetilde{\mathbf{H}}^{H}+ ext{diag}(oldsymbol{lpha})I_{K} ight)^{-1}$	Location	Location estimation Radiation pattern model UE/node movement	Estimated locatior	
SS-MMSE	$\widetilde{h}_{k,n,s}^{(BC,t)} = \frac{\widetilde{g}_{k,n,s}^{(BC,TX,t)} \widetilde{g}_{k,n,s}^{(BC,RX,t)}}{4\pi \frac{\widetilde{d}_{k,s}^{(BC,t)}}{\lambda} \sqrt{\kappa BT_k}} e^{-\jmath \frac{2\pi}{\lambda} \widetilde{d}_{BC,k,s}^{(t)}}$	$\widetilde{\mathbf{H}}_{BC}^{H}\left(\widetilde{\mathbf{H}}_{BC}\widetilde{\mathbf{H}}_{BC}^{H}+\operatorname{diag}(\boldsymbol{\alpha})I_{K}\right)^{-1}$	Location	Location estimation Radiation pattern model Approx. location UE/node movement	Approx. location	

$$\mathbf{H}^{(feed)} = \begin{bmatrix} \mathbf{H}^{(feed,1)}, \dots, \mathbf{H}^{(feed,N_S)} \end{bmatrix} \longrightarrow \mathbf{W}_{x} = \begin{bmatrix} \mathbf{W}_{x}^{(sat 1)}; \dots; \mathbf{W}_{x}^{(sat N_S)} \end{bmatrix}$$

Block computation with multiple satellites

A. Guidotti, A. Vanelli-Coralli, C. Amatetti., "Federated Cell-Free MIMO in Non-Terrestrial Networks: Architectures and Performance," submitted to IEEE Transactions on Aerospace and Electronic Systems, June 2023.

Power distribution

- Notably, proper normalisations of the beamforming matrix are needed aiming at
 - 1. Not exceeding the total on-board available power
 - Not working in the non-linear regime in the **on-board HPAs**
 - 3. Preserving the optimal MMSE solution (i.e., **orthogonality** among the matrix columns)

Sum Power Constraint (SPC)

Maximum Power Constraint (MPC) Per Antenna Constraint (PAC)

$$\widetilde{\mathbf{W}}_{MMSE} = \sqrt{\frac{P_t}{\operatorname{tr}(\mathbf{W}_{MMSE}\mathbf{W}_{MMSE}^H)}} \mathbf{W}_{MMSE}$$

- (1) and (3) are guaranteed
- (2) cannot be ensured _
- Typically the best performance, but not entirely feasible due to violating (2)

$$\widetilde{\mathbf{W}}_{MMSE} = \sqrt{\frac{P_t}{K \max_{k=1,\dots,K} \|\mathbf{w}_{k,:}\|^2} \mathbf{W}_{MMSE}}$$

- (1), (2), (3) are guaranteed
- The total on-board power is not fully exploited
- It might lead to a loss in the SNR and, then, in the SINR
- (1) and (2) are guaranteed

 $\widetilde{\mathbf{W}}_{MMSE} = \sqrt{\frac{P_t}{K}} \operatorname{diag}\left(\frac{1}{\|\mathbf{w}_1\|}, \dots, \frac{1}{\|\mathbf{w}_K\|}\right) \mathbf{W}_{MMSE}$

(3) is violated and it can lead to a significant performance loss in interference-limited scenarios

• Multiple satellites: sSPC and sMPC \rightarrow implemented per block

Performance with Earth moving beams and (s)MPC: VSAT

1800

- MMSE and LB-MMSE have the same performance in clear-sky
- Centralised vs Federated
 - significant capacity gain with two satellites per swarm
 - +50% in clear-sky
 - +12.5% in NLOS dense-urban
 - reduction in the number of unserved users thanks to path diversity in NLOS
- FR3/FR4 vs federated
 - massive capacity gain thanks to the exploitation of the full bandwidth
 - up to +350% in both environments
 - increase in the percentage of unserved users
 - ancillary information aging is challenging with multiple satellites

MMSE

A. Guidotti, A. Vanelli-Coralli, C. Amatetti., "Federated Cell-Free MIMO in Non-Terrestrial Networks: Architectures and Performance," submitted to IEEE Transactions on Aerospace and Electronic Systems, June 2023.

ALMA MATER STUDIORUM Università di Bologna

MMSE

Performance with Earth moving beams and (s)MPC: handheld

- Centralised vs Federated
 - similar capacity performance
 - reduction of the unserved users thanks to path diversity in NLOS
 - massive increase of the unserved users in clear-sky
 - due to ancillary information aging, the improved SNR cannot compensate the loss in the SIR
- FR3/FR4 vs federated
 - massive capacity gain thanks to the exploitation of the full bandwidth
 - up to +80% in both environments
 - reduction in the percentage of unserved users with federated MIMO
 - ancillary information aging is still challenging

MMSE

ALMA MATER STUDIORUM Università di Bologna

MMSF

A. Guidotti, A. Vanelli-Coralli, C. Amatetti., "Federated Cell-Free MIMO in Non-Terrestrial Networks: Architectures and Performance," submitted to IEEE Transactions on Aerospace and Electronic Systems, June 2023.

Challenges

- Payload design and constraints
 - array dimension
 - BFN and OBP
 - on-board power consumption
- Tight intra-swarm time and frequency synchronisation
- Need for accurate CSI or location estimates
 - ancillary information aging
 - potentially low C/I and overhead for CSI-based algorithms
 - privacy and non-GNSS enabled UEs for location-based algorithms
- Inter-swarm interference
- Scheduling: non-trivial since the beamformed SINR is known a posteriori
 - multiple time-slot based \rightarrow increased aging interval
 - iterative and integer programming solutions have been recently proposed
 - ML/NN solutions can be considered

Conclusions

- The integration of a NTN component into 5G is a reality since Rel. 17
- However, both evolutionary and revolutionary technologies are needed towards a truly unified 6G NT-T system infrastructure
- Federated CF-MIMO will be one of the pivotal technologies for 6G NTN
 - significant gains can be achieved, in particular for VSAT
 - the outage introduced by the ancillary information aging might pose a challenge in some scenarios
 - additional satellites are beneficial when path diversity is more important (NLOS conditions)
 - compared to FR 3 and 4 schemes, the advantage can be impressive, but considering also the outage that can be introduced, it strongly depends on the propagation environment
 - single satellite: significantly better in clear-sky conditions for all terminals
 - multiple satellites: significantly better in NLOS conditions for handheld terminals

Current initiatives...

pant N.	Participant o	rganisation name		Acronym	Country
rdinator)	ALMA MAT	ER STUDIORUM- UNIVERS	TA DI BOLOGNA	https://www.eag	eroroject.eu
	THALES AL	ENIA SPACE FRANCE SF.S		TASF	FR
	MARTEL GN	ивн Слост	• in	https://www.link	edincom/company/eager-project/
	THALES DIS	AIS DEUTS HLAND GMBI	H 🖌	https://twitter.co	mPeagersatcom
	GREENERW	AVE		GRN	FR
	THALES SIX	GTS FRANCE SAS		TH-SIX	FR
	ERICSSON A	AB		ERIS	SE
	THALES AL	ENIA SPACE UK LTD		TASUK	UK
			_		FR
FP	CNIC		ONS DE	****	ardust.eu
	Cric	253 00 2 1AKI	1021 ^{Hi}	European	ES
		ZENT	MFAHR	Commission	DE
	ORANGE SA			ORA	FR
	SES TECHCO	DM SA		SES	LU
		(ED ANCE			LD .

ALMA MATER STUDIORUM Università di Bologna

Dr. Alessandro Guidotti, CNIT

Department of Electrical, Electronic, and Information Engineering «Guglielmo Marconi»

a.guidotti@unibo.it

www.unibo.it