

ALMA MATER STUDIORUM Università di Bologna

The path to 5G-Advanced and 6G Non-Terrestrial Network systems

<u>A. Guidotti¹</u>, A. Vanelli-Coralli¹, V. Schena², N. Chuberre³, M. El Jaafari³, J. Puttonen⁴, S. Cioni⁵

¹University of Bologna ²Thales Alenia Space Italia ³Thales Alenia Space France ⁴Magister Solutions ⁵ESA/ESTEC

Introduction

- 5G systems are now bringing benefits to all sectors of our economy and society...
- ...but we are all already looking into the future
- **5G-Advanced** (5G-A): unleash the full potential of 5G systems
 - Strengthen the network performance
 - Provide connectivity to all devices in all scenarios
- **6G**: more than "just" extremely fast connectivity
 - digital twinning between domains: convergence of the physical, human, and digital worlds
 - connected intelligence
 - immersive communications: high-resolution visual/spatial, tactile/haptic, and other sensory data
- A significant innovation breakthrough is now required to define future NTN systems (Rel. 18+)
- To achieve a ubiquitous, continuous, flexible, and resilient infrastructure, a unified TN-NTN network is fundamental

Interaction between TN and NTN

- great opportunity to optimize the 6G service performances over the NTN component taking into account its peculiarities
- native support of MC and mobility across TN/NTN access technologies \rightarrow improved QoE

Potential services via NTN: 5G

- mass-market consumers
- complementing the TN in • un-/under-served areas

Emergency management ٠

- critical infrastructures
- Smart good tracking ٠

•

Potential services via NTN: 5G-Advanced

Architecture evolution: 5G

- 5G NTN (Rel. 17) focused on direct access via transparent payload satellites
 - GEO/LEO with fixed or moving beams

The transparent payload does not terminate the NR-Uu procedures nor it manages the QoS flows

Architecture evolution: 5G-A

• 5G-Advanced enhancements: regenerative payload, relay-based access, Multi-Connectivity

- The GW terminates all transport protocols
- The NG Air Interface is logical

- Scalable solution based on NFV/SDN for system tailoring
- Challenges related to F1
- Only opt.2 split is full-3GPP

Architecture evolution: 5G-A

• 5G-Advanced enhancements: regenerative payload, relay-based access, Multi-Connectivity

IAB-node

• Similar challenges in terms of the protocol terminations and air interfaces

Architecture evolution: 5G-A

• 5G-Advanced enhancements: regenerative payload, relay-based access, Multi-Connectivity

Architecture evolution: Multi-Layer Multi-Orbit Multi-Band 6G NTN

MATER STUDIORUM Università di Bologna

EAGER

Standardisation roadmap up to Rel. 17

Technologies and standardisation roadmap: Rel. 18

Item	Lead	Title	Completion
FS_5GET "Extra territoriality"	SA1	Guidelines for extra-territorial 5G Systems (5GS)	Dec. 2021
WI "NR_NTN-enh"	RAN2	Enhancements to Solutions for NR to support non-terrestrial networks (NTN)	Dec. 2023
WI "IOT_NTN-enh"	RAN2	Enhancements to Solutions for NB-IoT & eMTC to support non-terrestrial networks (NTN)	Dec. 2023
SI "FS_5GSAT_ARCH_Ph2"	SA2	5GC enhancement for satellite access Phase 2	Jun. 2023
SI "FS_5GSATB"	SA2	Study on satellite backhauling	Jun. 2023
SI "FS_eLCS_ph3"	SA2	Enhanced location services	Jun. 2023

- Rel. 18
 - mMTC: improving the performance in discontinuous coverage and deal with terminal mobility
 - eMBB
 - network-based UE location determination
 - coverage enhancements
 - NR- NTN deployment above 10 GHz and support for VSAT/ESIM terminals
 - NTN-TN and NTN-NTN mobility and service continuity enhancements

Technologies and standardisation roadmap: Rel. 19+

NTN-NTN asynchronous MC and CA • Beam management and Bandwidth Part (BWP) association enhancements Complete support for HEO and MEO and hybrid multi-orbit architectures Support of eMBMS 5G-Advanced UF without GNSS Relay-based architecture for NTN MU-MIMO Al and ML • Next generation waveforms for PAPR reduction • 6G NOMA and OTFS Reflecting Intelligent Surfaces

Conclusions

- The integration of a NTN component into 5G is a reality since Rel. 17
- However, both **evolutionary and revolutionary technologies** are needed towards a true fully integrated NT-T system infrastructure for 5G-Advanced and 6G communication systems
- NTN will play a **pivotal** role in future fully unified systems, leading to a ML-MO-MB 6G NTN
 - Architecture evolution
 - Regenerative payloads, relay-based access, MC
 - Technology evolution
 - Many technologies are candidate to be key enablers for 5G-A/6G NTN
 - NTN-NTN asynchronous MC and CA
 - UE without GNSS
 - Relay-based architecture for NTN
 - MU-MIMO
 - AI and ML
 - Next generation waveforms for PAPR reduction
 - Reflecting Intelligent Surfaces

- ...

• For **future** NTN systems, we need to make a further technology leap **now**

- **ESA EAGER** (Technologies and techniques for satcom beyond 5G networks)
 - research and identification of innovative technologies and techniques targeting highly efficient and deeply integrated satellite networks in 5G-Advanced and 6G communication systems

https://www.linkedin.com/company/eager-project/

https://twitter.com/eagersatcom

ALMA MATER STUDIORUM Università di Bologna

Alessandro Guidotti

Consorzio Nazionale Interuniversitario per le Telecomunicazioni (CNIT) RU@Department of Electrical, Electronic, and Information Engineering «Guglielmo Marconi»

alessandro.guidotti@unibo.it

www.unibo.it