

ALMA MATER STUDIORUM Università di Bologna

The evolution of NTN from 5G to 5G-Advanced and the path to 6G

Workshop on "Non-Terrestrial Networks for 6G Systems" (NTN6G)

11th IEEE International Conference on Wireless for Space and Extreme Environments (WiSEE) 2023 Aveiro, Portugal, September 8, 2023

Dr. Alessandro Guidotti, CNIT

From SatCom to NTN

TN/NTN convergence

Independent TN/NTN optimisation

TN optimisation minimum impact to support NTN

Source: GSOA, White Paper, "Satellite Communications and their role in enabling 6G," October 2022.

NTN: from interworking to integration

Source: El Jaafari M, Chuberre N, Anjuere S, Combelles L., "Introduction to the 3GPP-defined NTN standard: A comprehensive view on the 3GPP work on NTN," Int J Satell Commun Network. 2023;41(3):220-238. doi:10.1002/sat.1471

3GPP NTN in Rel. 17

NTN-based GEO/LEO with implicit HAPS/ATG compatibility

Service

- Main characteristics
 - transparent payload architecture
 - coverage type
 - Earth-fixed
 - Quasi-Earth-fixed
 - Earth-moving
 - FR1: S-band and L-band
 - handheld terminals with GNSS capabilities
 - FDD
 - Earth-fixed tracking
- Massive normative work to adapt the NR system to the NTN characteristics

Source: Mohamed El Jaafari, "3GPP NTN standardization: status and prospect," ASMS/SPSC conference, September 2022.

3GPP NTN standardisation effort

A. Guidotti - The evolution of NTN from 5G to 5G-Advanced and the path to 6G

available on the 3GPP website in August, 2023, with a tool proprietary of the University of Bologna. As such, the exact values might be subject to variations, without impacting the general trends.

5G NTN services

Source: 5G Americas, White Paper, "Update on 5G Non-Terrestrial Networks," July 2023.

ALMA MATER STUDIORUM Università di Bologna

3GPP NTN beyond Rel. 17

 MAC
 • MAC
 • other enhancements
 • Radio part (satellite and UE) specifications above 10 GHz
 • GG service requirements for NTN
 • 6G Study to support the NTN component
 • 6G features to support the NTN component

Source: A. Guidotti et al., "Role and Evolution of Non-Terrestrial Networks towards 6G systems," submitted to IEEE Access, 2023

NTN Rel. 18: main features

- Enhancements to the **NR radio protocols** to
 - support FR2 and mobile/nomadic VSAT
 - evaluations based on transparent payloads (IAB/regenerative FFS)
 - co-existence analysis on-going (adjacent channel)
 - allow the network verification of the GNSS coordinates determined by the UE
 - optimise mobility procedures in both idle and connected modes

Source: ESA EAGER Project, White Paper, "Architectures, services, and technologies towards 6G Non-Terrestrial Networks," February 2023.

Source: EC HORIZON-JU-SNS-2022 Project 5G-STARDUST, D3.1 "System Requirements Analysis and Specifications," July 2023.

- Enhancements to the NB-IoT/eMTC radio protocols to
 - optimise mobility procedures
 - improve the support of small constellations providing discontinuous service over a given area

NTN Rel. 19: potential topics

- Coverage enhancements (DL and possibly UL)
- NTN/TN mobility enhancement in connected mode (e.g., CHO)
- Support of HD mode RedCap UE (Reduced Capabilities) in FR1
- NR-NTN improved service experience

- Support of regenerative payloads (i.e., with ISL)
- Support of UEs with GNSS independent operation for uplink time and frequency synchronization in NTN based access (idle/connected modes)

NR-NTN new capabilities

 Regenerative payload = Store and Forward (i.e., eNB + ePC network elements)

IoT-NTN new capabilities

NTN Rel. 19: architecture

• Architecture evolution in three directions: regenerative payloads, IAB, Multi-Connectivity

• Full gNB on-board

- all protocols up to SDAP/RRC are terminated on-board
- the feeder link SRI (PHY+MAC) shall carry the NG upper layers
- routing schemes and algorithms now also involve the GW and the NTN payload

Functional split

- scalable solution based on NFV/SDN for system tailoring
- challenges related to F1
- only opt.2 split is full-3GPP

Source: ESA EAGER Project, White Paper, "Architectures, services, and technologies towards 6G Non-Terrestrial Networks," February 2023.

Source: EC HORIZON-JU-SNS-2022 Project 5G-STARDUST, D3.1 "System Requirements Analysis and Specifications," July 2023.

ALMA MATER STUDIORUM UNIVERSITÀ DI BOLOGNA

NTN Rel. 19: architecture

• Architecture evolution in three directions: regenerative payloads, IAB, Multi-Connectivity

- Regenerative payload: full Donor on-board
 - both direct and indirect connections are possible
 - challenges related to F1-SRI on the service link
 - challenges related to NG-SRI on the feeder link
 - BAP on the service link

- Regenerative payload: Donor-DU on-board
 - both direct and indirect connections are possible
 - challenges related to F1-SRI on the service and feeder links
 - BAP on the service link

NTN Rel. 19: architecture

Architecture evolution in three directions: regenerative payloads, IAB, Multi-Connectivity •

MR-DC Radio Access Network NR-Uu NG (service link) aNB NTN GW N6 to data NG-SRI Xn-ISL network(s) (feeder link) UE 5GC aNB NTN GW

TN-NTN with regenerative payload •

- challenging due to the different channel characteristics
- NG-SRI on the feeder link ٠
- Xn-SRI on the feeder link ٠
- both TN-gNB and NTN-gNB can be elected MN ٠

NTN-NTN with regenerative payload

- the NTN nodes do not necessarily belong to the same orbit (challenging)
 - e.g., low-latency through LEO and large throughput through GEO
- NG-SRI on the feeder link
- Xn over ISLs

A. Guidotti - The evolution of NTN from 5G to 5G-Advanced and the path to 6G

Source: EC HORIZON-JU-SNS-2022 Project 5G-STARDUST, D3.1 "System Requirements Analysis and UNIVERSITÀ DI BOLOGNA Specifications," July 2023.

- 6G systems are expected to achieve more than "just" extremely fast connectivity
 - digital twinning between domains: convergence of the physical, human, and digital worlds
 - connected intelligence
 - immersive communications: high-resolution visual/spatial, tactile/haptic, and other sensory data

- Non-Terrestrial Networks will be pivotal to provide a ubiquitous, continuous, flexible, and resilient
 infrastructure for
 - Direct connectivity to smart phones outdoor and in light indoor/in-vehicle (emergency communications)
 - Connectivity mobile platforms (trains/planes/ships/drones/HAPs)
 - Broadcast/multicast
 - Low latency communications to support vertical markets (railway, automotive, aeronautical, etc)
 - Network-based positioning
 - IoT applications (global NB-IoT/mMTC coverage, remote/control monitoring of critical infrastructures, smart good tracking)

- The current NTN standardization framework provides a solid ground for NTN integration into 5G
- 5G-A will introduce enhancements with additional capabilities and increased performances
- 6G will target a fully unified T-NT infrastructure based on multi-dimensional multilayer architecture

 No distinction between TN and NTN nodes: they are all nodes of the same infrastructure, to be jointly optimised and exploited

ALMA MATER STUDIORUM

UNIVERSITÀ DI BOLOGNA

Source: A. Guidotti et al., "Role and Evolution of Non-Terrestrial Networks towards 6G systems," submitted to IEEE Access, 2023

Enabling Technologies

Architecture and system design

Multi-layered constellation from GEO to drones, Innovative LEO and vLEO orbits, optical inter and intra node-links design, cell-free MU-MIMO, traffic-driven coverage

Networking, edge computing and communications

Softwarization, virtualization, and orchestration of network resources, functional split, advanced IP, routing in the sky, resource management, integrated edge communication and computing

Flexible and integrated waveforms

Low PAPR and low OOBE solutions, Non-orthogonal techniques to increase the connection density, novel RA procedures to allow multiple transmissions per beam, multipoint transmission from the sky, distributed beamforming

Dynamic Spectrum Access and new spectrum

Coordinated and uncoordinated sharing among different access technologies, inter and intra layer, higher frequency bands, Q/V and above

Positioning

Network based positioning

AI/ML

Network and system orchestration, Radio Resource Management, Network traffic forecasting, Physical layer management, Channel estimation

Antennas and components

Active antennas for link budget and flexible coverage, Refracting RIS for indoor coverage, regenerative payload, high-parallel energy efficient HW, Optical devices

Source: A. Guidotti et al., "Role and Evolution of Non-Terrestrial Networks towards 6G systems," submitted to IEEE Access, 2023

A. Guidotti - The evolution of NTN from 5G to 5G-Advanced and the path to $\mathbf{6}\mathbf{G}$

6G NTN key elements

Source: A. Guidotti et al., "Role and Evolution of Non-Terrestrial Networks towards 6G systems," submitted to IEEE Access, 2023

A. Guidotti - The evolution of NTN from 5G to 5G-Advanced and the path to 6G

ALMA MATER STUDIORUM Università di Bologna

Conclusions

- The integration of an NTN component into 5G is a reality since Rel. 17
- However, both **evolutionary and revolutionary technologies** are needed towards a true fully integrated NT-T system infrastructure for 5G-Advanced and 6G communication systems
- NTN will play a pivotal role in future fully unified systems, leading to a ML-MO-MB 6G NTN

For future NTN systems, we need to make a further technology leap now!

Current funded projects on NTN...

pant N.	Participant organisation name	Acronym	Country
rdinator)	ALMA MATER STUDIORUM - UNIVERSITA DI BOLOGNA	https://WBQ.eag	erproject.eu
	THALES ALENIA SPACE FRANCE SES	TASF	FR
	MARTEL GMBH	https://www.link	edin_com/company/eager-project/
	THALES DIS AIS DEUTS HLAND GMBH	https://twitter.co	mPEagersatcom
	GREENERWAVE	GRN	FR
	THALES SIX GTS FRANCE SAS	TH-SIX	FR
	ERICSSON AB	ERIS	SE
	THALES ALENIA SPACE UK LTD	TASUK	UK
	ERICSSON 5G	ERIF	FR
	CENTRE TECNOLOGIC DEVICE COMUNICACIONS DE	https://www.5g-	stardust.eu
	CATALUNIA VSLOIOUSL	https://www.link	ES edin com/company/5g-stardust/
	DEUTSCHES ZENTRUM FUR LUFT - UND RAUMFAH	V DLR	DE
	ORANGE SA	ORA	FR
A. Guidotti -	THE EVOLUTION OF NIN TROM 5G to 5G-Advanced and the path to 6G	SES	LU
			ГD

ALMA MATER STUDIORUM Università di Bologna

Dr. Alessandro Guidotti, CNIT

Research Unit at the Department of Electrical, Electronic, and Information Engineering «Guglielmo Marconi»

a.guidotti@unibo.it

www.unibo.it